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Minimum Layout of Circulant Graphs
into Certain Height Balanced Trees

Jessie Abraham(B) and Micheal Arockiaraj
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Abstract. A graph embedding comprises of an ordered pair of injective
maps ≺ f, p � from a guest graph G = (V (G), E(G)) to a host graph
H = (V (H), E(H)) which is formulated as follows: f is a mapping from
V (G) to V (H) and p assigns to each edge (a, b) of G, a shortest path
p(a, b) in H. The minimum layout problem is to find an embedding ≺
f, p � from a graph G into a graph H such that

∑
e∈E(H) EC≺f,p�(e) =

∑ |(a, b) ∈ E(G) : e ∈ E(p(a, b))| is minimized. In this paper we develop
an algorithm to find the minimum layout of embedding the circulant
graph into certain height balanced trees like Fibonacci tree and wounded
lobster.

Keywords: Height balanced tree · Layout · Circulant graph · Fibonacci
tree

1 Introduction

Graph embedding has been an integral tool in efficient implementation of par-
allel algorithms on parallel computers with minimal communication overhead.
A graph embedding comprises of an ordered pair of injective maps ≺ f, p �
from a guest graph G = (V (G), E(G)) to a host graph H = (V (H), E(H))
which is formulated as follows: f is a mapping from V (G) to V (H) and p
assigns to each edge (a, b) of G, a shortest path p(a, b) in H [1,7]. Figure 1
illustrates a graph embedding. The edge congestion of an embedding is defined
by EC≺f,p�(e) = |(a, b) ∈ E(G) : e ∈ E(p(a, b))| [6].

The layout L≺f,p�(G,H) of an embedding is defined as the sum of edge
congestion of all the edges of H [3,5]. The minimum layout of G into H is given
by L(G,H) = min L≺f,p�(G,H). The minimum layout problem is to find the
embedding that induces L(G,H). When the host graph is a tree, the layout
problem finds application in graph drawing, data structures and representations
and networks for parallel systems [5,10].

Maximum Induced Subgraph Problem [3]: Let G = (V (G), E(G)) and S ⊆
V (G). Let IG(S) = {(u, v) ∈ E(G) : u ∈ S and v ∈ S} and for 1 ≤ k ≤ |V (G)|,
let IG(k) = max

S⊆V , |S|=k
|IG(S)|. Then the problem is to find S ⊆ V (G) with

c© Springer International Publishing AG 2017
S. Arumugam et al. (Eds.): ICTCSDM 2016, LNCS 10398, pp. 90–97, 2017.
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Fig. 1. Embedding of an enhanced hypercube G into rooted complete binary tree H

|S| = k such that IG(k) = |IG(S)|. Such a set S is called an optimal set with
respect to the maximum induced subgraph problem.

Min-cut Problem [3]: Let G = (V (G), E(G)) and S ⊆ V (G). Let ΘG(S) =
{(u, v) ∈ E : u ∈ S and v /∈ S} and for 1 ≤ k ≤ |V (G)|, let ΘG(k) =

min
S⊆V , |S|=k

|ΘG(S)|. Then the problem is to find S ⊆ V (G) with |S| = k such

that ΘG(k) = |ΘG(S)|. Such a set S is said to be optimal with respect to the
min-cut problem. For any graph G, ΘG(V − S) = ΘG(S) for all S ⊆ V (G). If G
is an r-regular graph, then ΘG(k) = rk−2IG(k) for every k ∈ {1, 2, . . . , |V (G)|}.

The following results provide a method for partitioning the edges of the host
graph which in turn can be effectively used to solve the minimum layout problem.

Lemma 1 (Congestion Lemma) [6]. Let G be an r-regular graph and ≺ f, p �
be an embedding of G into H. Let S be an edge cut of H such that the removal
of edges of S splits H into 2 components H1 and H2 and EC≺f,p�(S) denote
the sum of edge congestion over all the edges in S. Let G1 = G[f−1(H1)] and
G2 = G[f−1(H2)]. Suppose the following conditions hold.

1. For every edge (a, b) ∈ Gi, i = 1, 2, p(a, b) has no edges in S.
2. For every edge (a, b) in G with a ∈ G1 and b ∈ G2, p(a, b) has exactly one

edge in S.
3. G1 is optimal with respect to the maximum induced subgraph problem.

Then EC≺f,p�(S) is minimum and EC≺f,p�(S) = ΘG(|V (G1)|) =
ΘG(|V (G2)|).
Lemma 2 [6]. Let ≺ f, p � be an embedding from G into H. Let
{S1, S2, . . . , Sp} be a partition of E(H) such that EC≺f,p�(Si) is minimum for

all i. Then L≺f,p�(G,H) is minimum and L≺f,p�(G,H) =
p∑

i=1

EC≺f,p�(Si).

Definition 1 [10]. A circulant undirected graph G(n;±S), S ⊆ {1, . . . , �n/2�},
n ≥ 3 is defined as a graph consisting of the node set V = {0, 1, . . . , n − 1} and
the edge set E = {(i, j) : |j − i| ≡ s(mod n), s ∈ ±S}.
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In this paper, we confine our work to the circulant graph G(n;±S), where
S = {1, 2, ..., j}, 1 ≤ j < �n/2�. For n ≥ 3, 1 ≤ j < �n/2�, G(n;±{1, 2, ..., j}) is
a 2j-regular graph. Figure 2(a) illustrates a circulant graph.

Lemma 3 [8]. A set of k consecutive nodes induces an optimal set with respect
to the maximum induced subgraph problem in G(n;±S) on k nodes.

Lemma 4 [8]. Let G be the circulant graph G(n;±S), n ≥ 3. Then for 1 ≤
k ≤ n,

IG(k) =

⎧
⎨

⎩

k(k − 1)/2 ; k ≤ j + 1
kj − j(j + 1)/2 ; j + 1 < k ≤ n − j
1
2{(n − k)2 + (4j + 1)k − (2j + 1)n} ; n − j < k ≤ n .
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Fig. 2. (a) Circulant graph G(8;±{1, 2, 3}) (b) Wounded lobster L4

A height balanced tree T is a rooted binary tree in which for every node v,
the difference between the heights of the left and right child denoted as v1 and
v2 respectively is at most one [2].

Fibonacci trees are a type of height balanced trees which are built recursively
in one of the following two ways.

Fibonacci Tree fh [4]: The trees f1 and f2 consists of only the root node. For
h ≥ 3, fh is constructed by taking a new root node and attaching fh−1 on the
left side and fh−2 on the right side of the root node by an edge as shown in
Fig. 3(a).

Fibonacci Tree f
′
h [2]: The tree f1

1 consists of only the root node and f
′
2 is

formed by attaching a pendant node to the root node. For h ≥ 3, the left
subtree of f

′
h is f

′
h−1 and its right subtree is f

′
h−2. Figure 3(b) illustrates f

′
h for

h = 1, 2, . . . 5.
Let |V (fh)| = mh and |V (f

′
h)| = m

′
h. Then, mh = 2Fh−1 and m

′
h = Fh+2−1,

where Fh denotes the Fibonacci number.



Minimum Layout of Circulant Graphs into Certain Height Balanced Trees 93

f
1

f
2

f
3

f
4

f
5 f

1
f
2

f
3

f
4

f
5

’ ’ ’ ’ ’

(a) (b)

Fig. 3. (a) fh type Fibonacci trees (b) f
′
h type Fibonacci trees

Definition 2 [9]. A lobster is a tree with the property that the removal of pen-
dant nodes leaves a caterpillar. A wounded lobster Ln is a lobster satisfying the
following conditions:

(i) There are 2n−2 spine nodes and every spine node is adjacent to exactly one
node of degree 2 and one node of degree 1.

(ii) Removal of pendant nodes incident at nodes of degree 2 leaves a caterpillar.

Figure 2(b) illustrates a wounded lobster.
There are several techniques for traversing the nodes of a tree according to

the order in which the nodes are visited. In this paper we confine our study to
postorder.

Algorithm 1. Postorder Tree Traversal Algorithm
Do the following recursively until all nodes are traversed:
Step 1 - Traverse left subtree.
Step 2 - Traverse right subtree.
Step 3 - Visit root node.

2 Main Results

In this section we embed the circulant graph into Fibonacci trees and wounded
lobster to minimize their layouts.

Theorem 1. The minimum layout of circulant graphs G = G(mh;±S) and
G

′
= G(m

′
h;±S) into the Fibonacci trees is given by (a) L(G, fh) =

Fh−2.ΘG(m3) +Fh−3.ΘG(m4) + . . . + F2.ΘG(mh−1) + 2|S| and (b)L(G′, f
′
h) =

Fh−1.ΘG′ (m
′
2) + Fh−2.ΘG′ (m

′
3) + . . . + 2ΘG′ (m

′
h−2) + ΘG′ (m

′
h−1) + 2|S|.

Proof. We split the proof into three parts comprising of labeling the guest and
host graphs, followed by the proposal of embedding and layout computation.

Guest and Host Labeling: Label the circulant graph and the two types of
Fibonacci trees as in the pattern given in Table 1.
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Table 1. Labeling algorithm

Labeling I Labeling II

Guest Graph: Label the consecutive
nodes of G(mh;±S) as
0, 1, 2, . . . ,mh − 1 in the clockwise
direction

Guest Graph: Label the consecutive
nodes of G(m

′
h;±S) as 0, 1, . . . ,m

′
h − 1

in the clockwise direction

Host Graph: Label the nodes of fh by
postorder tree traversal from 0 to
mh − 1

Host Graph: Label the nodes of f
′
h by

postorder tree traversal from 0 to
m

′
h − 1

Proposed Embedding: Define an embedding ≺ f, p � from G(mh;±S) into
fh and G(m

′
h;±S) into f

′
h such that f(x) = x.

Layout Computation: We split the proof into two cases.

Proof for (a): For 1 ≤ i ≤ mh − 1, let Si be an edge cut of fh such that its
removal disengages fh into two components Xi and Xi as shown in Fig. 4(a),
with the node set Vi of Xi being as follows.

For 1 ≤ i ≤ mh−1,

Vi =

⎧
⎪⎨

⎪⎩

{0, 1, . . . , i − 1}, if i = mg, 1 ≤ g ≤ h − 1
{ma,ma + 1, . . . , i − 1}, if i = ma + mb, 1 ≤ b < a ≤ h − 1
{i − 1}, otherwise.

For mh−1 + 1 ≤ i ≤ mh − 1,

Vi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{mh−1,mh−1 + 1, . . . , i − 1}, if i = mh−1 + mg, 1 ≤ g ≤ h − 1

{mh−1 + ma,mh−1 + ma + 1, . . . , i − 1}, if i = mh−1 + ma + mb,

1 ≤ b < a ≤ h − 1

{i − 1}, otherwise.

Let Gi be the graph induced by {f−1(u) : u ∈ Vi}. It can be noted that Xi is
consecutively labeled for all i and hence by Lemma 3, Vi is an optimal set with
respect to the maximum induced subgraph problem. Si also satisfies conditions
(i) and (ii) of Lemma 1. In addition, {Si}mh−1

i=1 forms a partition of E(fh). Hence
by Lemma 2, L≺f,p�(G, fh) is minimum.

Let mh −1 = Fh +Fh−2 +Fh−3 +Fh−4 + . . . F2, where mh −1 represents the
number of edge cuts of fh and Fh, Fh−2, Fh−3, . . . , F3, F2 denote the number of
node sets Vi of cardinality m2,m3, . . . ,mh−2 and mh−1 respectively.

Layout: L(G, fh) =
mh−1∑

i=1

EC≺f,p�(Si) =
mh−1∑

i=1

ΘG(|Vi|) =
Fh∑

i=1

ΘG(m2) +

Fh−2∑

i=1

ΘG (m3) +
Fh−3∑

i=1

ΘG(m4) + . . . +
F3∑

i=1

ΘG(mh−2) +
F2∑

i=1

ΘG(mh−1) =

Fh−2.ΘG(m3) + Fh−3.ΘG(m4) + . . . + F2.ΘG(mh−1) + 2|S|.
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Proof for (b): Let S
′
i , 1 ≤ i ≤ mh −1 be an edge cut of f

′
h such that removal of

S
′
i disconnects f

′
h into two components Yi and Y i as depicted in Fig. 4(b) where

the node set V
′
i of Yi is defined by replacing mg,ma,mb and mh−1 in Vi of case

(a) by m
′
g,m

′
a,m

′
b and m

′
h−1 respectively.

Let G
′
i be the graph induced by {f−1(a) : a ∈ V

′
i }. Clearly Xi is labeled

consecutively for all i and hence by Lemma 3, V
′
i is an optimal set with respect

to the maximum induced subgraph problem. S
′
i also satisfies the remaining two

conditions of Lemma 1. In addition, {S
′
i}m

′
h−1

i=1 forms a partition of E(f
′
h). Hence

by Lemma 2, L≺f,p�(G, f
′
h) = L(G, f

′
h).

Let m
′
h − 1 = Fh + Fh−1 + Fh−2 + . . . F2, where Fh, Fh−1, Fh−2, . . . , F3, F2

denote the number of nodes sets V
′
i of cardinality m

′
1,m

′
2, . . . ,m

′
h−2 and m

′
h−1

respectively.

Layout: L(G
′
, f

′
h) =

m
′
h−1∑

i=1

EC≺f,p�(S
′
i) =

m
′
h−1∑

i=1

ΘG′ (|V ′
i |) =

Fh∑

i=1

ΘG′ (m
′
1) +

Fh−1∑

i=1

ΘG′ (m
′
2) + . . . +

F3∑

i=1

ΘG′ (m
′
h−2) +

F2∑

i=1

ΘG′ (m
′
h−1) = Fh−1.ΘG′ (m

′
2) +

Fh−2.ΘG′ (m
′
3) + . . . + 2ΘG′ (m

′
h−2) + ΘG′ (m

′
h−1) + 2|S|.

Theorem 2. The minimum layout of G = G(2n;±S) into the wounded lobster
Ln is given by L(G,Ln) = 1

3{2n−1(12j(2n−4 + 1) + 2n−3(3 − 2n) − 7)}.

Proof. Guest and Host Labeling: Label G(2n;±S) in the clockwise direction
as described in Table 1. Label Ln using postorder tree traversal order from 0 to
2n − 1.

Proposed Embedding: Define an embedding ≺ f, p � from G(2n;±S) into
Ln such that f(x) = x.

Layout Computation: Table 2 gives three sets of edge cuts covering E(Ln)
and the node set of the components obtained by the removal of these edge cuts
as depicted in Fig. 4(c).

Let Gr, G
′
r and G

′′
r be the inverse image of Yr, Y

′
r and Y

′′
r respectively under

≺ f, p �. By Lemma 3, the node set of all the three inverse images are optimal in G
with respect to the maximum induced subgraph problem. All three edge cutsSr, S

′
r

Table 2. Edge cuts of Ln

Edge Cuts Components V(Component)

Sr r = 1, 2, . . . , 2n−1 Yr, Y r V (Yr) =

{
{4(r − 1)} if r is odd

{2(r − 2) + 1} if r is even

S
′
r r = 1, 2, . . . , 2n−2 Y

′
r , Y

′
r V (Y

′
r ) = {4(r − 1) + 1, 4(r − 1) + 2}

S
′′
r r = 1, 2, . . . , 2n−2 − 1 Y

′′
r , Y

′′
r V (Y

′′
r ) = {4(r − 1) + 0, . . . , 4(r − 1) + 3}
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and S
′′
r also satisfy the remaining two conditions of Lemma1. In addition, {Sr, r =

1, 2, . . . , 2n−1} ∪ {S′
r, r = 1, 2, . . . , 2n−2} ∪ {S′′

r , r = 1, 2, . . . , 2n−2 − 1} forms
a partition of E(Ln). Hence by Lemma 2, the layout induced by the embedding
≺ f, p � is minimum.

From Lemmas 2 and 4, L(G,Ln) =
2n−1
∑

r=1
EC≺f,p�(Sr) +

2n−2
∑

r=1
EC≺f,p�(S

′
r) +

2n−2−1∑

r=1
EC≺f,p�(S

′′
r ) =

2n−1
∑

r=1
ΘG(|V (Yr)|) +

2n−2
∑

r=1
ΘG(|V (Y

′
r )|) +

{
2n−3
∑

r=1
ΘG

(|V (Y
′′
r )|)+

2n−2−1∑

r=2n−3+1

ΘG(|V (Y
′′
r )|)

}

= 2n−1

3 { 12j (2n−4+1)+2n−3(3−2n)−7 } .
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Fig. 4. Edge cuts of (a) f5 (b) f
′
5 (c) L4

3 Conclusion

In this paper we have embedded and found the minimum layout of the cir-
culant graph into certain classes of height balanced trees like Fibonacci trees
and wounded lobster by using edge partitioning techniques and isoperimetric
methods.

Acknowledgement. This work was supported by Project No. 5LCTOI14MAT002,
Loyola College - Times of India, Chennai, India.
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Optimal Embedding of Locally Twisted
Cubes into Grids
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Abstract. The hypercube has been used in numerous problems related
to interconnection networks due to its simple structure and communica-
tion properties. The locally twisted cube is an important class of hyper-
cube variants with the same number of nodes and connections per node,
but has only half the diameter and better graph embedding capability
as compared to its counterpart. The embedding problem plays a signifi-
cant role in parallel and distributed systems. In this paper we devise an
optimal embedding of the n-dimensional locally twisted cube onto a grid
network. AQ1

Keywords: Locally twisted cube · Embedding · Edge congestion ·
Optimal set

1 Introduction

In a parallel distributed system, the execution of parallel algorithms devised
for a particular network on other networks in such a way that communication
overhead could be minimized when they are run concurrently, can be modeled
as a graph embedding problem.

Let G = (V (G), E(G)) and H = (V (H), E(H)) be undirected connected
graphs on n nodes each known as a guest graph and host graph, representing the
network underlying the algorithm and the network on which it is to be embedded
respectively. A graph embedding is an ordered pair ≺f, p� of injective maps
where f maps V (G) onto V (H) and p maps the edges of G into simple paths of
H such that if e = (a, b) ∈ E(G), then p(e) is a simple path in H with f(a) and
f(b) as endpoints [11].

The edge congestion EC≺f,p�(e) [3,10] of an edge e ∈ H denotes the max-
imum number of edges of the guest graph that are embedded on e and is
denoted as

EC≺f,p�(e) = | {(u, v) ∈ E(G) : e ∈ E(p(u, v))} |.
For any set S ⊆ V (G), let IG(S) = {(u, v) ∈ E(G) : u ∈ S &v ∈ S} and

for 1 ≤ k ≤ |V (G)|, let IG(k) = min
S⊆V (G),|S|=k

|IG(S)|. The maximum subgraph

problem is to find S ⊆ V (G) with |S| = k such that IG(k) = |IG(S)|. Such a set
S is called an optimal set [8].
c© Springer International Publishing AG 2017
D. Gaur and N.S. Narayanaswamy (Eds.): CALDAM 2017, LNCS 10156, pp. 1–11, 2017.
DOI: 10.1007/978-3-319-53007-9 1
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Lemma 1 (Congestion Lemma). [10] Let G be an r-regular graph and ≺f, p�
be an embedding of G into H. Let S be an edge cut of H such that the removal
of edges of S splits H into 2 components H1 and H2 and let G1 = f−1(H1)
and G2 = f−1(H2). The following conditions are sufficient for EC≺f,p�(S) to
be minimum where EC≺f,p�(S) denotes the sum of edge congestion over all the
edges in S.

1. For every edge (a, b) ∈ Gi, i = 1, 2, p(a, b) has no edges in S.
2. For every edge (a, b) in G with a ∈ G1 and b ∈ G2, p(a, b) has exactly one

edge in S.
3. G1 or G2 is an optimal set.

Let {Si}m
i=1 be a partition of E(H) such that EC≺f,p�(Si) is minimum over

all embeddings for every i. An embedding ≺f, p� from G into H for which
such a partition can be determined is known as an optimal embedding [10].
Finding an optimal embedding helps in solving the layout problem [12–14], which
finds application in VLSI circuit design [4], graph drawing [2], crossing number
problem [5] and structural engineering [9].

The rest of the paper is organized as follows. Some fundamental definitions
and preliminary results for locally twisted cube and grid are given in the next
section. In Sect. 3, we devise a labeling algorithm and prove that it yields the
optimal embedding for locally twisted cubes into grids. In Sect. 4, we conclude
the paper.

2 Basic Definitions and Terminologies

The binary hypercube is one of the most popular, versatile and efficient topolog-
ical structures of interconnection networks having simple deadlock-free routing,
a small diameter, bounded link traffic density and a good support for parallel
algorithms.

Definition 1. [8] For n ≥ 1, the node set of an n-dimensional hypercube Qn

is made up of n-bits binary strings labeled in order using {0, 1, . . . , 2n − 1}
beginning with 0 at 00 . . . 00

︸ ︷︷ ︸

n times

and ending at 11 . . . 11
︸ ︷︷ ︸

n times

with 2n − 1. Two nodes

x, y ∈ V (Qn) are adjacent if and only if their corresponding binary strings differ
in exactly one bit. An incomplete hypercube on i nodes of Qn is the subgraph
induced by Li = {0, 1, . . . , i − 1}, 1 ≤ i ≤ 2n, and is denoted by Qn[Li].

Theorem 1. [7] For 1 ≤ i ≤ 2n, Li is an optimal set in Qn.

Definition 2. [15] For n ≥ 2, an n-dimensional locally twisted cube is defined
recursively as follows:

1. LTQ2 is a graph consisting of four nodes labeled with 00, 01, 10, 11 respec-
tively, connected by four edges (00, 01), (00, 10), (01, 11) and (10, 11).
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Optimal Embedding of Locally Twisted Cubes into Grids 3

2. For n ≥ 3, LTQn is built from two disjoint copies of LTQn−1 as follows:
Let 0LTQn−1 denote the graph obtained by prefixing the binary representa-
tion of each node of one copy of LTQn−1 with 0. Let 1LTQn−1 denote the
graph obtained by prefixing the binary representation of each node of another
copy of LTQn−1 with 1. Connect each node 0x2x3 . . . xn of 0LTQn−1 to the
node 1 (x2 ⊕ xn) x3 . . . xn of 1LTQn−1 by an edge, where ⊕ denotes addition
modulo 2.

0010

0100
3

10

2

7

6

4

5

10

89

11

12

13

15

14

0000

0110 1010

1110

1000

11011100

1001

1011

1111

0111

0011

0101

0001

0000                   0001               0100               0101           1000                      1001           1100      1011

0010                    0011             0110                 0111           1010                      1011           1110     1111

0                     1                     4                          5            8                     9                    3121

2                      3                     6                         7            10                  11                   14 51

(a) (b)

Fig. 1. Isomorphic 4-dimensional locally twisted cubes with decimal and binary
labeling

Figure 1 depicts a 4-dimensional locally twisted cube. LTQn can be equiva-
lently defined non-recursively as follows.

Definition 3. [15] For n ≥ 2, an n-dimensional locally twisted cube is a graph
with node set of the form {0, 1}n. Two nodes x = x1x2x3 . . . xn and y =
y1y2y3 . . . yn of LTQn are adjacent if and only if either of the following con-
ditions is satisfied.

1. (a) There is an integer i with 1 ≤ i ≤ n − 2 such that xi = yi and xi+1 =
yi+1 ⊕ xn.
(b) All remaining bits of x and y are identical.

2. There is an integer i ∈ {n − 1, n} such that x and y differ only in the ith bit.

For 1 ≤ i ≤ 2n−1, let Ei = {0, 2, . . . , 2i − 2} and let (TO)i = {at : 1 ≤ t ≤ i}
where a1 = 1, a2 = 3 and for 2 ≤ k ≤ n − 1, 1 ≤ j ≤ 2k−1,

a2k−1+j =

{

aj + 2k + 2k−1 : 1 ≤ j ≤ 2k−2

aj + 2k−1 : 2k−2 < j ≤ 2k−1.

Lemma 2. [1] For 1 ≤ i ≤ 2n,

(ETO)i =

{

Ei : 1 ≤ i ≤ 2n−1

E2n−1 ∪ (TO)i−2n−1 : 2n−1 < i ≤ 2n.

is an optimal set in LTQn.
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4 J. Abraham and M. Arockiaraj

In what follows, A 
 B represents an isomorphism between A and B.

Lemma 3. [1] For 1 ≤ i ≤ 2n−1, LTQn[Ei] 
 LTQn[(TO)i] 
 Qn[Li].

Definition 4. [6] An n×m grid G[n×m] is a graph with node set V (G[n×m]) =
{αij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} and edge set E(G[n × m]) = {(αij , αi(j+1)) | 1 ≤
i ≤ n, 1 ≤ j ≤ m − 1} ∪ {(αkp, α(k+1)p) | 1 ≤ k ≤ n − 1, 1 ≤ p ≤ m}. A 2a × 2b

grid is of the form G[2a × 2b], where a ≤ b, a + b = n.

3 Optimal Embedding Methodology

The optimal embedding proof comprises of three steps namely, node labeling,
embedding proposal and proof of optimization for the proposed embedding.

3.1 Node Labeling Algorithm

In this section we label the nodes of LTQn and G[2a ×2b] in a particular pattern
and prove that this labeling pattern gives the optimal embedding of LTQn into
G[2a × 2b].

LTQn Labeling: Label the nodes of LTQn by lexicographic order [10] using
{0, 1, . . . , 2n − 1} starting with 0 at 00 . . . . . . 00

︸ ︷︷ ︸

n times

and ending at 11 . . . . . . 11
︸ ︷︷ ︸

n times

with

2n − 1. A clear illustration for this decimal labeling is given in Fig. 1(b).

Grid Labeling: For 1 ≤ k ≤ 2a, 1 ≤ l ≤ 2b, let g(k, l) denote the node located
in the kth row and lth column of the grid G[2a × 2b]. We shall split the grid
labeling into two cases.

Case 1. For 1 ≤ k ≤ 2a, 1 ≤ l ≤ 2b−1,

g(k, l) = 2b(k − 1) + 2(l − 1).

Case 2. For 1 ≤ k ≤ 2a, 2b−1 < l ≤ 2b, labeling g(k, l) is divided into three
sub-cases.

Sub-case 2(a). When l = 2b−1 + 1, let

g(k, l) =

{

2b(k − 1) + 1 : k = 1
2b(k − 1) + 2b−1 + 1 : k = 2.

For 3 ≤ k ≤ 2a, let p be a positive integer such that 2p−1 < k ≤ 2p. Then

g(k, l) =

{

2b(k − 1) + 1 & : g(k − 2p−1, l) = 2b(k − 2p−1 − 1) + 2b−1 + 1
2b(k − 1) + 2b−1 + 1 & : g(k − 2p−1, l) = 2b(k − 2p−1 − 1) + 1.

Sub-case 2(b). When l = 2b−1 + 2,

g(k, l) = g(k, 2b−1 + 1) + 2.
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Optimal Embedding of Locally Twisted Cubes into Grids 5

Fig. 2. The different cases of node labeling of G[23 × 24]

Sub-case 2(c). For 2b−1 + 3 ≤ l ≤ 2b, we shall represent l in the form l =
2b−1 +2i−1 + j, where 2 ≤ i ≤ b−1, 1 ≤ j ≤ 2i−1. The labeling of g(k, l) for this
case is subdivided into two cases.

Case 2c1: Suppose l = 2b−1 + 2i−1 + j, 1 ≤ i ≤ b − 2, 1 ≤ j ≤ 2i−1,

g(k, l) =

{

g(k, 2b−1 + j) + 2i−1 + 2i : 1 ≤ j ≤ 2i−2

g(k, 2b−1 + j) + 2i−1 : 2i−2 < j ≤ 2i−1.

Case 2c2: Suppose l = 2b−1 + 2b−2 + j, 1 ≤ j ≤ 2b−2,

g(k, l) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

g(k, 2b−1 + j) + 2b−2 + 2b−1 : g(k, 2b−1 + 1) = 2b(k − 1) + 1

& j ≤ 2b−3

g(k, 2b−1 + j) + 2b−2 : g(k, 2b−1 + 1) = 2b(k − 1) + 1 & j > 2b−3

g(k, 2b−1 + 2b−2 − j + 1) − 2b−1 : g(k, 2b−1 + 1) = 2b(k − 1)

+2b−1 + 1.

Figure 2 illustrates the node labeling pattern of a 23 × 24 grid.

3.2 Embedding Optimization

The following results are used to obtain the proof of optimization for the
embedding.

For 1 ≤ i ≤ 2a, let Di = {(i− 1)2b, (i− 1)2b +1, . . . , (i− 1)2b +(2b − 1)} and
Ri = {D1,D2, . . . , Di}.

Lemma 4. For 1 ≤ i ≤ 2a, Ri is an optimal set in LTQn.

Proof. We prove this result by induction on i. By the recursive definition of
locally twisted cubes, LTQn[R1] 
 LTQb and hence |E(LTQn[R1])| = b.2b−1.
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6 J. Abraham and M. Arockiaraj

By Lemmas 2 and 3, R1 is an optimal set in LTQn. Assuming that the result is
true for i = k − 1, we prove that Rk is optimal in LTQn.

We first show that LTQn[Dk] 
 LTQb for every k, 1 ≤ k ≤ 2a. We have
that LTQn[D1] 
 LTQb. We prove the hypothesis for every other k by showing
that LTQn[Dk] is isomorphic to LTQn[Dk−2p−1 ], where 1 ≤ p ≤ a and 2p−1 <
k ≤ 2p. Define a mapping ϕ : V (LTQn[Dk−2p−1 ]) → V (LTQn[Dk]) such that
ϕ(x) = x + 2b+p−1.

Let the binary representation of x be 00 . . . 00
︸ ︷︷ ︸

(a−p) times

0xa−p+2 . . . xn. Then the

binary representation of ϕ(x) is 00 . . . 00
︸ ︷︷ ︸

(a−p) times

1xa−p+2 . . . xn.

For j ∈ {a−p+2, . . . , n−2}, the bits variation of (x, y) ∈ E(LTQn[Dk−2p−1 ])
and the corresponding (ϕ(x), ϕ(y)) ∈ E(LTQn[Dk]) is as follows.

x = 000 . . . . . . 00
︸ ︷︷ ︸

(a−p) times

0xa−p+2 . . . xj . . . xn−1xn and

y =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

00 . . . 00
︸ ︷︷ ︸

(a−p) times

0 . . . xj(xj+1 ⊕ xn) . . . xn−1xn : j ∈ {a − p + 2, . . . , n − 2}

00 . . . 00
︸ ︷︷ ︸

(a−p) times

0xa−p+2 . . . xjxn : j = n − 1

00 . . . 00
︸ ︷︷ ︸

(a−p) times

0xa−p+2 . . . xn−1xj : j = n

then the binary representations of ϕ(x) and ϕ(y) are

ϕ(x) = 000 . . . . . . 00
︸ ︷︷ ︸

(a−p) times

1xa−p+2 . . . xj . . . xn−1xn and

ϕ(y) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

00 . . . 00
︸ ︷︷ ︸

(a−p) times

1 . . . xj(xj+1 ⊕ xn) . . . xn−1xn : j ∈ {a − p + 2, . . . , n − 2}

00 . . . 00
︸ ︷︷ ︸

(a−p) times

1xa−p+2 . . . xjxn : j = n − 1

00 . . . 00
︸ ︷︷ ︸

(a−p) times

1xa−p+2 . . . xn−1xj : j = n

Hence (x, y) ∈ E(LTQn[Dk−2p−1 ]) ⇔ for j ∈ {a−p+2, a−p+3, . . . , n−2},
the binary representations of x and y differ in the jth bit and have either identical
or different (j + 1)th bit depending on xn, the remaining bits being identical or
their binary representations differ only in the (n − 1)th or nth bit ⇔ the binary
representations of ϕ(x) and ϕ(y) differ in the jth bit and have either identical or
different (j+1)th bit depending on xn, the remaining bits being identical or their
binary representations differ only in the (n − 1)th or nth bit ⇔ (ϕ(x), ϕ(y)) ∈
E(LTQn[Dk]). Therefore ϕ is an isomorphism and hence LTQn[Dk] 
 LTQb.

Let E(LTQn[Dk] ∧ LTQn[Rk−1]) = {(x, y) : x ∈ V (LTQn[Dk]) and y ∈
V (LTQn[Rk−1])}. Let k be represented as k = 2r1 + 2r2 + . . . + 2rq + 1 such
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Optimal Embedding of Locally Twisted Cubes into Grids 7

that r1 > r2 > . . . > rq ≥ 0. Each node in LTQn[Dk] is adjacent to q
nodes in LTQn[Rk−1]. For m ∈ {1, 2, . . . , a}, the binary representation of x
and y such that (x, y) ∈ E(LTQn[Dk] ∧ LTQn[Rk−1]) are of the form x =
x1x2 . . . xm−1xm . . . xn−10 and y = x1x2 . . . xm−1xmxm+1 . . . xn−10, when x ∈
{(k−1).2b, (k−1).2b+2, . . . , (k−1).2b+(2b−2)}, y ∈ {0, 2, . . . , (k−2).2b+(2b−2)}
and x = x1 . . . xm−11xm+1 . . . xn−11 and y = x1 . . . xm−10xm+1 . . . xn−11, when
x ∈ {(k − 1).2b +1, (k − 1).2b +3, . . . , (k − 1).2b +(2b − 1)}, y ∈ {1, 3, 5, . . . , (k −
2).2b + (2b − 1)}. Clearly, there is no edge (x, y) where x ∈ {(k − 1).2b, (k −
1).2b +2, . . . , (k − 1).2b +(2b − 2)} and y ∈ {1, 3, 5, . . . , (k − 2).2b +(2b − 1)} and
vice versa. Therefore, |E(LTQn[Rk])| = |E(LQn[Rk−1])| + |E(LTQn[Dk])| +
|E(LTQn[Dk] ∧ LTQn[Rk−1])| = |E(LTQn[(ETO)k−1.2b ])| + |E(LTQb)| +
q(2b) = |E(LTQn[(ETO)(k).2b ])| and hence by Lemma 2, Rk is an optimal set in
LTQn. �

For 1 ≤ j ≤ 2b−1, let Sj = {o1j , o2j , . . . , o2aj} be the set of all nodes in the
(2b−1 + j)th column of G[2a × 2b] taken in a distinct order, where oij is defined
as follows.

1. For i = 1, 2, 1 ≤ j ≤ 2b−1,

oij =

{

aj : i = 1
a2b−1+j : i = 2.

where ak denotes the kth element of (TO)2b−1 .
2. For 3 ≤ i ≤ 2a, 1 ≤ j ≤ 2b−1, let t be a positive integer such that t ≤ n and

2t−1 < i ≤ 2t. Then

oij =

{

o(i−2t−1)j + 2b+t−1 + 2b+t−2 : 2t−1 < i ≤ 2t−1 + 2t−2

o(i−2t−1)j + 2b+t−2 : 2t−1 + 2t−2 < i ≤ 2t.

Let COj = {S2b−1 , S2b−1−1, . . . , S2b−1−j+1}.

Lemma 5. For 1 ≤ j ≤ 2b−1, COj is an optimal set in LTQn.

Proof. The proof consists of two parts. First we prove that for 1 ≤ j ≤ 2b−1,
LTQn[Sj ] is isomorphic to a copy of Qa. In the second part we prove that
|E(LTQn[COj ])| = |E(Qn[Lj.2a ])| for all j, which asserts the optimality of COj ,
according to Lemma 3.

For 1 ≤ j ≤ 2b−1, let Cj
21 = {o1j , o2j}. For 2 ≤ r ≤ a, 1 ≤ j ≤ 2b−1, let

Cj
2r = Cj

2r−1 ∪ X, where Cj
2r−1 = {oij : 1 ≤ i ≤ 2r−1} and X = {oij : 2r−1 < i ≤

2r}. We prove the first part by induction on r. By verification, LTQn[Cj
21 ] 
 Q1.

Assuming that the result is true for r = k − 1, we show that LTQn[Cj
2k ] 
 Qk.

For this we first prove that LTQn[X] 
 LTQn[Cj
2k−1 ].

Define a function f : V (LTQn)[Cj
2k−1 ] → V (LTQn[X]) such that

f(x) =

{

x + 2b+k−1 + 2b+k−2 : x ∈ C2k−2j

x + 2b+k−2 : x ∈ C2k−1j \ C2k−2j .
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8 J. Abraham and M. Arockiaraj

(a)  (b)

61

08

23 48

46

0

21169

18

43 50

2

28

41189

66

20

63 52

4

48

001 116

86

71

311

33

501

9

5698

19

95 35

11

511

7619

701

23

36 39

51

911

71

111

57

59

Fig. 3. (a) LTQ7[CE3] (b) LTQ7[CO3] both isomorphic to Q7[L24]

If the binary representation of x is 00 . . . 00
︸ ︷︷ ︸

(a−k)times

0xa+k+2 . . . xn−11, then the

binary representation of f(x) is 00 . . . 00
︸ ︷︷ ︸

(a−k)times

1xa+k+2xa+k+3 . . . xn−11. The bits

variation of (x, y) ∈ E(LTQn[Cj
2k−1 ]) and the corresponding (f(x), f(y)) ∈

E(LTQn[X]) for i ∈ {a − k + 3, a − k + 4 . . . , n − 3} is as follows.
The binary representations of x and y are

x = 00 . . . 00
︸ ︷︷ ︸

(a−k)times

0xa−k+2 . . . xixi+1 . . . xn−11 and

y = 00 . . . 00
︸ ︷︷ ︸

(a−k)times

0xa−k+2 . . . xi−1xixi+1xi+2 . . . xn−11.

Then the binary representations of f(x) and f(y) are

f(x) = 00 . . . 00
︸ ︷︷ ︸

(a−k)times

1xa−k+2 . . . xixi+1 . . . xn−11 and

f(y) = 00 . . . 00
︸ ︷︷ ︸

(a−k)times

1xa−k+2 . . . xi−1xixi+1xi+2 . . . xn−11.

Hence (x, y) ∈ E(LTQn[Cj
2k−1 ]) ⇔ there exists an i ∈ {a − k + 3, a − k +

4, . . . , n − 3} such that the binary representations of x and y differ only in the
ith and (i + 1)th bits ⇔ the binary representations of f(x) and f(y) differ only
in the same ith and (i + 1)th bits ⇔ (f(x), f(y)) ∈ E(LTQn[X]). Therefore f is
an isomorphism.

Next we prove that there is a perfect matching between LTQn[Cj
2k−1 ] and

LTQn[X]. For any oij ∈ V (LTQn[X]) and o(i−2k−1)j ∈ V (LTQn[Cj
2k−1 ]), let the

binary representation of oij be
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Optimal Embedding of Locally Twisted Cubes into Grids 9

oij = α1α2 . . . αa−kαa−k+1 . . . αn−11

Then the binary representation of o(i−2p−1)j is

o(i−2k−1)j = α1α2 . . . αa−kαa−k+1αa−k+2αa−k+3 . . . αn−11.

The binary representations of oij and o(i−2k−1)j differ only in the (a−k+1)th

and (a − k + 2)th bits. Hence (oij , o(i−2k−1)j) is an edge in LTQn for 2k−1 <

i ≤ 2k, implying that there is a perfect matching between the two isomorphic
components, similar to a hypercube connectivity. Therefore LTQn[Cj

2k ] 
 Qk

and LTQn[Sj ] is isomorphic to Qa for all j ∈ {1, 2, . . . , 2b−1}.
We prove the second part by induction on j. Clearly LTQn[CO1] 
 Qa.

Hence |E(LTQn[CO1])| = |E(Qn[L1.2a ])|. By Lemma 3, it is optimal. Assuming
that the postulate is true for j = q − 1, we prove that |E(LTQn[COq])| =
|E(Qn[Lq.2a ])|.

V (LTQn[COq]) can be represented as V (LTQn[COq]) = V (LTQn[COq−1])∪
V (LTQn[S2b−1−q+1]). Let E(LTQn[COq−1] ∧ LTQn[S2b−1−q+1]) = {(u, v) : u ∈
V (LTQn[COq−1]), v ∈ V (LTQn[S2b−1−q+1])}. Let q be represented as q = 2s1 +
2s2 + . . . + 2sm + 1 such that s1 > s2 > . . . > sm ≥ 0. For any q, there are m.2a

edges in E(LTQn[COq−1] ∧ LTQn[S2b−1−q+1]).
For t ∈ {a + 1, a + 2, . . . , n − 1}, the binary representations of u and v such

that (u, v) is an edge in E(LTQn[COq−1] ∧ LTQn[S2b−1−q+1]) are of the form

u = u1u2 . . . utut+1 . . . un−11 and

v =

{

u1u2 . . . utut+1 . . . un−11 : t ∈ {a + 1, a + 2 . . . , n − 2}
u1u2 . . . ut−1ut1 : t = n − 1.

Hence the number of edges in LTQn[COq] is given by |E(LTQn[COq])| =
|E(LTQn [COq−1])| + |E(LTQn[S2b−1−q+1])| + |E(LTQn[COq−1] ∧ LTQn[
S2b−1−q+1])| = |E(Qn[Lq−1.2a ])| + |E(Qa)| + m.2a = |E(Qn[Lq.2a ])|. Figure 3(b)
depicts LTQ7[CO3]. �

Lemma 6. For 1 ≤ j ≤ 2b−1,

CEj =

{ 0, 1 × 2b, . . . , (2a − 1) × 2b,
2, 1 × 2b + 2, . . . , (2a − 1) × 2b + 2,

. . .
& . . .
& . . .

2(j − 1), 1 × 2b + 2(j − 1), . . . , (2a − 1) × 2b + 2(j − 1) }
is an optimal set in LTQn.

Proof. We have to prove that LTQn[CEj ] is isomorphic to LTQn[(ETO)j.2a ].
But j.2a ≤ 2n−1 and hence by Lemma 3, it is enough to show that LTQn[CEj ]
is isomorphic to Qn[Lj.2a ]. Define a function π : V (LTQn[CEj ]) → V (Qn[Lj.2a ])
such that for 0 ≤ g ≤ 2a−1, 0 ≤ h ≤ j − 1, π(g × 2b + 2h) = h × 2a + g. Let the
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10 J. Abraham and M. Arockiaraj

binary representation of g×2b +2h be α1α2 . . . αb−1β1 . . . βa+1. Then the binary
representation of h × 2a + g is β1β2 . . . βa+1α1α2 . . . αb−1.

Two nodes x = x1x2 . . . xn and y = y1y2 . . . yn are adjacent in LTQn[CEj ]
⇔ there exists an integer i ∈ {1, 2, . . . , n − 1} such that xi = yi ⇔ π(x) and
π(y) differ only in the ith bit ⇔ (π(x), π(y)) ∈ E(Qn[Lj.2a ]). Hence LTQn[CEj ]
is isomorphic to Qn[Lj.2a ]. Figure 3(a) illustrates this result. �

Proposed Embedding. Define an embedding f from LTQn into G[2a × 2b]
such that f(x) = x, together with p(u, v), a shortest path irrespective of choice
in G[2a × 2b] between f(u) and f(v) for every (u, v) ∈ E(LTQn).

Theorem 2. The embedding ≺f, p� from LTQn into G[2a × 2b] is optimal.

Proof. Table 1 gives a list of certain edge cuts covering the entire edge set of
G[2a × 2b] and the node set of the components obtained by the removal of these
edge cuts, which is illustrated in Fig. 4.

Table 1. Edge cuts of G[2a × 2b]

Edge Cuts Type of Cuts Components V(Component)

Xi

i = 1, 2, . . . , 2a −1
Horizontal cut Ai, Ai V (Ai) = Ri

Yej

j = 1, 2, . . . , 2b−1 − 1
Left to middle vertical cut Bej , Bej V (Bej) = CEj

Yoj

j = 1, 2, . . . , 2b−1 − 1
Right to middle vertical cut Boj , Boj V (Boj) = COj

Z Middle vertical cut P1, P2 V (P1) = E2n−1

0 2 4 6 8 10 12 14 1 3 7 5 13 15 11 9

16 18 20 22 24 26 28 30 25 27 31 29 21 23 19 17

32 34 36 38 40 42 44 46 41 43 47 45 37 39 35 33

48 50 52 54 56 58 60 62 49 51 55 53 61 63 59 57

64 66 68 70 72 74 76 78 73 75 79 77 69 71 67 65

80 82 84 86 88 90 92 94 81 83 85 93 95 91 89

96 98 100 102 104 106 108 110 97 99 103 101 109 111 107 105

87

112 114 116 118 120 122 124 126 121 123 127 125 117 119 115 113

A3

X3

0 2 4 6 8 10 12 14 1 3 7 5 13 15 11 9

16 18 20 22 24 26 28
30

25 27 31 29 21 23
19

17

32 34 36 38 40 42 44
46

41 43 47 45 37 39
35

33

48 50 52 54 56 58 60
62

49 51 55 53 61 63
59

57

64 66 68 70 72 74 76
78

73 75 79 77 69 71
67

65

80 82 84 86 88 90 92
94

81 83 85 93 95
91

89

96 98 100 102 104 106 108
110

97 99 103 101 109 111
107

105

87

112 114 116 118 120 122 124
126

121 123 127 125 117 119
115

113

Yo Bo1 1Be6 Ye6
ZP1

P2

Fig. 4. Edge cuts along the rows and columns of G[23 × 24].

All the edge cuts satisfy conditions (i) − (iii) of Lemma 1. In addition, {Xi :
i = 1, 2, . . . , 2a−1}∪{Yej : j = 1, 2 . . . , 2b−1−1}∪{Yoj : j = 1, 2, . . . 2b−1−1}∪Z
is a partition of E(G[2a ×2b]). Therefore by the definition of optimal embedding,
≺f, p� is optimal. �
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4 Conclusion

In this paper we have devised a rigorous node labeling algorithm and proved that
this labeling gives the optimal embedding of an n-dimensional locally twisted
cube into a 2a × 2b grid structure, where a ≤ b < n, using Congestion Lemma
and edge partitioning techniques. It would be an interesting line of research to
find another elegant and simple node labeling pattern which induces an optimal
embedding.
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